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Resumen

Modelos teóricos como los gravastars han surgido con el fin de resolver problemas asociados a los
agujeros negros como la singularidad y la paradoja de la información. Este trabajo presenta un nuevo
modelo de gravastar con complejidad nula, una condicion útil para el estudio de cuerpos estelares
complejos. Para ello, se utilizó el método de desacoplamiento gravitacional (GD) bajo el enfoque de
deformación geométrica mínima extendida (MGDe). Los resultados demuestran que la nueva solución
de gravastar obtenida es un modelo físicamente aceptable que podría emplearse para el estudio de
sistemas mas complejos.

Introducción

Las EFE describen a la gravitación como un efecto de la curvatura del espacio‐tiempo. Para estudiar
el interior del agujero negro se requiere que Tµν 6= 0.

Gµν = Rµν − 1
2
Rgµν = 8πG

c4 Tµν (1)

Figura 1. Representación simplificada de un agujero negro.

En 2001, Pawel Mazur y Emil Mottola [4], proponen la teoría de una estrella de vacío gravitacional
(gravastar), un modelo alternativo a los agujeros negros. La solución de este modelo se considera
como la solución interior de Schwarzschild en el límite ultracompacto.
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Figura 2. Estructura de un gravastar.

I. 0 ≤ r < r1, p = −ρ0,
II. r1 < r < r2, p = ρ,

III. r2 < r, p = ρ = 0.
(2)

eν(r) = 1
4
(1 − H2r2), (3a)

e−λ(r) = 1 − H2r2. (3b)

Metodología

El factor de complejidad [3] cuantifica la complejidad de un sistema autogravitante con simetría es‐
férica. La complejidad nula (YTF = 0) sirve como condición extra al resolver las EFE. El método GD
resulta en un sistema de 3 ecuaciones acopladas con 5 incógnitas {ν, λ, ρ, pr, pt}.

Tµν = T
(s)
µν + αθµν, (4)

κρ = 1
r2 + e−λ

(
λ′

r
− 1

r2

)
, (5a)

κpr = − 1
r2 + e−λ

(
ν′

r
+ 1

r2

)
, (5b)

κpt = e−λ

4

(
2ν′′ + ν′2 − ν′λ′ + 2ν′ − λ′

r

)
(5c)

ρ = ρ(s) + αθ0
0, (6a)

pr = p
(s)
r − αθ1

1 (6b)

pt = p
(s)
t − αθ2

2 (6c)

La MGDe se consigue alterando la geometría del espacio‐tiempo de la solución conocida T
(s)
µν . En

particular, la configuración {g 6= 0, f 6= 0} se la conoce como MGDe. Como resultado, se desacopla el
sistema de ecuaciones (5) en dos nuevos sistemas respecto a las fuentes T

(s)
µν y θµν .

ds2 = eξ(r)dt2 − e−µ(r)dr2 − r2dΩ2 (7)

ξ 7−→ ν = ξ + αg (8a)

e−µ 7−→ e−λ = e−µ + αf (8b)
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Figura 3. MGD como una extensión de la Relatividad General.

Bajo el enfoque MGDe, las componentes de la métrica pasan de {ν, λ} a {ξ, µ}.

ν(r) = ln
[1

4
(1 − H2r2)

]
+ αg(r), (9a)

e−λ(r) = 1 − H2r2 + αf (r). (9b)

Mediante una restricción en la densidad en la fuente θµν se obtiene f (r), mientras que para g(r) se
utiliza el concepto de complejidad nula. Finalmente, la nueva solución de gravastar es

e−λ(r) = 1 − H2r2(1 + η), (10a)

eν(r) =

(
1 − H2r2)ηC2

(
cos (C1) −

√
1
η(1 − H2r2(1 + η)) · sin (C1)

)2

4(η − 1 + H2r2(1 + η))
, (10b)

κρ = 3H2ϵ, (10c)

κpr = − 1
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r2
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(10d)

κpt = H2

ηB(r)
(
1 − H2r2

)2 (η − A(r))2 (A(r) sin (C1) − cos (C1))
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(
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]
.

(10e)

Condiciones de frontera

Para analizar su comportamiento se utiliza una solución exterior fue obtenida bajo el enfoque MGD
[6] en base a las condiciones frontera.

eν = 1 − 2M

r
, (11a)

e−λ =
(

1 − 2M

r

)(
1 + ℓ

2r − 3M

)
(11b)

κρ = − ℓM

r2(3M − 2r)2
(12a)

κpr = − ℓ

r2(3M − 2r)
(12b)

κpt = ℓ(M − r)
r2(3M − 2r)2

(12c)

eν
∣∣
Σ− = eν

∣∣
Σ+ ; e−λ

∣∣
Σ− = e−λ

∣∣
Σ+ ; pr

∣∣
Σ− = pr

∣∣
Σ+ (13)

Resultados
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Figura 4. Resultados preliminares de la nueva solución de gravastar.
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Figura 5. Resultados de la nueva solución de gravastar con η = 5/2, C1 = −π/
√

5, C2 = 1, ℓ = −1, M = 1.

Conclusiones

En este trabajo se modeló con éxito la solución interior de un gravastar utilizando la condición de
complejidad nula, aplicando el método de desacople gravitacional bajo el enfoque de deformación
geométrica mínima extendida. Emplear un enfoque alternativo demostró la eficiencia de extender
el dominio del modelo estándar de gravastar hacia uno más complejo satisfaciendo las condiciones
básicas de aceptabilidad física.
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